BalogBlog

Sunday, January 19, 2020

Blame obesity on Thomas Edison?


A reader-friendly guide to the brain. Click here!


ScienceDaily

Your source for the latest research news
advertisement
Science News

from research organizations

Study finds dopamine, biological clock link to snacking, overeating and obesity

Date:
January 3, 2020
Source:
University of Virginia
Summary:
A new study finds that the pleasure center of the brain and the brain's biological clock are linked, and that high-calorie foods -- which bring pleasure -- disrupt normal feeding schedules, resulting in overconsumption.
Share:
    
FULL STORY

Clock and eating concept (stock image). | Credit: (c) nehopelon / stock.adobe.com
Clock and eating concept (stock image).
Credit: © nehopelon / Adobe Stock
During the years 1976 through 1980, 15% of U.S. adults were obese. Today, about 40% of adults are obese. Another 33% are overweight.


Coinciding with this increase in weight are ever-rising rates of heart disease, diabetes, cancer and health complications caused by obesity, such as hypertension. Even Alzheimer's disease may be partly attributable to obesity and physical inactivity.
"The diet in the U.S. and other nations has changed dramatically in the last 50 years or so, with highly processed foods readily and cheaply available at any time of the day or night," Ali Güler, a professor of biology at the University of Virginia, said. "Many of these foods are high in sugars, carbohydrates and calories, which makes for an unhealthy diet when consumed regularly over many years."

A reader-friendly guide to the brain. Click 
In a study published Thursday in the journal Current Biology, Güler and his colleagues demonstrate that the pleasure center of the brain that produces the chemical dopamine, and the brain's separate biological clock that regulates daily physiological rhythms, are linked, and that high-calorie foods -- which bring pleasure -- disrupt normal feeding schedules, resulting in overconsumption. Using mice as study models, the researchers mimicked the 24/7 availability of a high-fat diet, and showed that anytime snacking eventually results in obesity and related health problems.
Güler's team found that mice fed a diet comparable to a wild diet in calories and fats maintained normal eating and exercise schedules and proper weight. But mice fed high-calorie diets laden with fats and sugars began "snacking" at all hours and became obese.
Additionally, so-called "knockout" mice that had their dopamine signaling disrupted -- meaning they didn't seek the rewarding pleasure of the high-fat diet -- maintained a normal eating schedule and did not become obese, even when presented with the 24/7 availability of high-calorie feeds.
A reader-friendly guide to the brain. Click 

advertisement

"We've shown that dopamine signaling in the brain governs circadian biology and leads to consumption of energy-dense foods between meals and during odd hours," Güler said.
Other studies have shown, Güler said, that when mice feed on high-fat foods between meals or during what should be normal resting hours, the excess calories are stored as fat much more readily than the same number of calories consumed only during normal feeding periods. This eventually results in obesity and obesity-related diseases, such as diabetes.
Speaking of the modern human diet, Güler said, "The calories of a full meal may now be packed into a small volume, such as a brownie or a super-size soda. It is very easy for people to over-consume calories and gain excessive weight, often resulting in obesity and a lifetime of related health problems.
"Half of the diseases that affect humans are worsened by obesity. And this results in the need for more medical care and higher health care costs for individuals, and society."
Güler said the human body, through thousands of years of evolution, is hard-wired to consume as much food as possible as long as it's available. He said this comes from a long earlier history when people hunted or gathered food and had brief periods of plenty, such as after a kill, and then potentially lengthy periods of famine. Humans also were potential prey to large animals and so actively sought food during the day, and sheltered and rested at night.
advertisement

"We evolved under pressures we no longer have," Güler said. "It is natural for our bodies as organisms to want to consume as much as possible, to store fat, because the body doesn't know when the next meal is coming.
"But, of course, food is now abundant, and our next meal is as close as the kitchen, or the nearest fast-food drive-through, or right here on our desk. Often, these foods are high in fats, sugars, and therefore calories, and that's why they taste good. It's easy to overconsume, and, over time, this takes a toll on our health."
Additionally, Güler said, prior to the advent of our electricity-powered society, people started the day at dawn, worked all day, often doing manual labor, and then went to sleep with the setting of the sun. Human activity, therefore, was synchronized to day and night. Today, we are working, playing, staying connected -- and eating -- day and night. This, Guler said, affects our body clocks, which were evolved to operate on a sleep-wake cycle timed to daytime activity, moderate eating and nighttime rest.
"This lights-on-all-the-time, eat-at-any-time lifestyle recasts eating patterns and affects how the body utilizes energy," he said. "It alters metabolism -- as our study shows -- and leads to obesity, which causes disease. We're learning that when we eat is just as important as how much we eat. A calorie is not just a calorie. Calories consumed between meals or at odd hours become stored as fat, and that is the recipe for poor health."
The National Institute of General Medical Sciences and University of Virginia Brain Institute funded the research.
make a difference: sponsored opportunity


Story Source:
Materials provided by University of Virginia. Note: Content may be edited for style and length.


David Balog at 12:28 AM No comments:
Share

Friday, January 3, 2020

Dogs process numbers like humans


Unique experiment explores canine 'numerosity'

Date: December 18, 2019
Source: Emory Health Sciences

Summary
The results of a new canine numerosity study suggests that a common neural mechanism has been deeply conserved across mammalian evolution.

  
Learn about your amazing brain here! 
  
Biology Letters published the results, which suggest that a common neural mechanism has been deeply conserved across mammalian evolution.

"Our work not only shows that dogs use a similar part of their brain to process numbers of objects as humans do -- it shows that they don't need to be trained to do it," says Gregory Berns, Emory professor of psychology and senior author of the study.

"Understanding neural mechanisms -- both in humans and across species -- gives us insights into both how our brains evolved over time and how they function now," says co-author Stella Lourenco, an associate professor of psychology at Emory.

Such insights, Lourenco adds, may one day lead to practical applications such as treating brain abnormalities and improving artificial intelligence systems.

Lauren Aulet, a PhD candidate in Lourenco's lab, is first author of the study.

The study used functional magnetic resonance imaging (fMRI) to scan dogs' brains as they viewed varying numbers of dots flashed on a screen. The results showed that the dogs' parietotemporal cortex responded to differences in the number of the dots. The researchers held the total area of the dots constant, demonstrating that it was the number of the dots, not the size, that generated the response.

The approximate number system supports the ability to rapidly estimate a quantity of objects in a scene, such as the number of predators approaching or the amount of food available for foraging. Evidence suggests that humans primarily draw on their parietal cortex for this ability, which is present even in infancy.

This basic sensitivity to numerical information, known as numerosity, does not rely on symbolic thought or training and appears to be widespread throughout the animal kingdom. Much of the research in non-humans, however, has involved intensive training of the subjects.

Previous research, for example, has found that particular neurons in the parietal cortex of monkeys are attuned to numerical values. Such studies had not clarified whether numerosity is a spontaneous system in non-human primates, because the subjects underwent many trials and received rewards for selecting scenes with greater numbers of dots in preparation for the experiments.

Behavioral studies in dogs that were trained in the task of discriminating between different quantities of objects have also indicated that dogs are sensitive to numerosity.

The Emory researchers wanted to delve further into the neural underpinnings of canine number perception using fMRI.

Berns is founder of the Dog Project, which is researching evolutionary questions surrounding man's best, and oldest friend. The project was the first to train dogs to voluntarily enter an fMRI scanner and remain motionless during scanning, without restraint or sedation.

Learn about your amazing brain here!

Lourenco primarily researches human visual perception, cognition and development.

Eleven dogs of varying breeds were involved in the current fMRI experiments. The dogs did not receive advance training in numerosity. After entering the fMRI, they passively viewed dot arrays that varied in numerical value. Eight of the 11 dogs showed greater activation in the parietotemporal cortex when the ratio between alternating dot arrays was more dissimilar than when the numerical values were constant.

"We went right to the source, observing the dogs' brains, to get a direct understanding of what their neurons were doing when the dogs viewed varying quantities of dots," Aulet says. "That allowed us to bypass the weaknesses of previous behavioral studies of dogs and some other species."

Humans and dogs are separated by 80 million years of evolution, Berns notes. "Our results provide some of the strongest evidence yet that numerosity is a shared neural mechanism that goes back at least that far," he says.

Unlike dogs and other animals, humans are able to build on basic numerosity in order to do more complex math, drawing primarily on the prefrontal cortex. "Part of the reason that we are able to do calculus and algebra is because we have this fundamental ability for numerosity that we share with other animals," Aulet says. "I'm interested in learning how we evolved that higher math ability and how these skills develop over time in individuals, starting with basic numerosity in infancy."

Additional authors of the study include Veronica Chiu and Ashley Prichard, Emory graduate students in psychology, and Mark Spivak, CEO of Comprehensive Pet Therapy. Spivak and Berns co-founded Dog Star Technologies to develop techniques to study how dogs perceive the world.

The work was supported by the National Institutes of Health, the John Merck Fund and the Office of Naval Research.

Story Source:

Materials provided by Emory Health Sciences. Original written by Carol Clark. Note: Content may be edited for style and length.





David Balog at 12:26 PM No comments:
Share
‹
›
Home
View web version
Powered by Blogger.