Date:
September 15, 2021
Source:
Curtin University
Summary:
Ground-breaking new research has discovered a likely cause of Alzheimer's disease, in a significant finding that offers potential new prevention and treatment opportunities.'
FULL STORY
Ground-breaking new Curtin University-led research has discovered a likely cause of Alzheimer's disease, in a significant finding that offers potential new prevention and treatment opportunities for the second-leading cause of death.
The study, published in the PLOS Biology journal and tested on mouse models, identified that a probable cause of Alzheimer's disease was the leakage from blood into the brain of fat-carrying particles transporting toxic proteins.
Lead investigator Curtin Health Innovation Research Institute (CHIRI) Director Professor John Mamo said his collaborative group of Australian scientists had identified the probable 'blood-to-brain pathway' that can lead to Alzheimer's disease, the most prevalent form of dementia globally.
Healing the Brain: Stress, Trauma and Development
“Easy to read. Difficult to put down.”--Micheal J. Colucciello, Jr., NY State pharmaceutical researcher, retired.
“David Balog takes a subject fraught with difficulty and makes it simple and accessible to everyone. The book goes a long way in helping one understand how and why and in what ways stress affects how we live and cope. Invaluable.”--Jessica Hudson, former president, National Association of Former Foster Children
"While we previously knew that the hallmark feature of people living with Alzheimer's disease was the progressive accumulation of toxic protein deposits within the brain called beta-amyloid, researchers did not know where the amyloid originated from, or why it deposited in the brain," Professor Mamo said.
"Our research shows that these toxic protein deposits that form in the brains of people living with Alzheimer's disease most likely leak into the brain from fat carrying particles in blood, called lipoproteins.
"This 'blood-to-brain pathway' is significant because if we can manage the levels in blood of lipoprotein-amyloid and prevent their leakage into the brain, this opens up potential new treatments to prevent Alzheimer's disease and slow memory loss."
Building on previous award-winning research that showed beta-amyloid is made outside the brain with lipoproteins, Professor Mamo's team tested the ground-breaking 'blood-to-brain pathway' by genetically engineering mouse models to produce human amyloid-only liver that make lipoproteins.
"As we predicted, the study found that mouse models producing lipoprotein-amyloid in the liver suffered inflammation in the brain, accelerated brain cell death and memory loss," Professor Mamo said.
"While further studies are now needed, this finding shows the abundance of these toxic protein deposits in the blood could potentially be addressed through a person's diet and some drugs that could specifically target lipoprotein amyloid, therefore reducing their risk or slowing the progression of Alzheimer's disease."
Alzheimer's WA Chairman Adjunct Professor Warren Harding said the findings may have a significant global impact for the millions of people living with Alzheimer's disease.
Story Source:
Materials provided by Curtin University.